New research project awarded- FYLDE Coast Consortium

I am really pleased to announce that we have been awarded an AHRC Health Inequalities Phase 2 Award as part of UKRI’s Mobilising Community Assets to Tackle Health Inequalities research programme for the FYLDE Coast Consortium . The project is led by Dr Barbara Mezes, at the University of Liverpool, and I am one of the Co-Investigators.

Project outline

Coastal communities continue to have more, and greater health challenges compared to their inland neighbours. This project will use creative methods and co-production to unite experts-by-experience and experts-by-profession from the public and voluntary, community, faith, and social enterprise sectors. They will build partnerships and identify ways to address health disparities in Fylde Coast and in other coastal communities.

As Co-Investigator in this project I will be helping stakeholders built capacity in research and creative methods. Our workshops will help participants grow research skills, develop researcher identity, and learn about different research methods that can be used to answer different research questions relevant to the community.

New academic lead for Creative Futures at the University of Brighton

I am delighted to take on a new, exciting role, as the new academic lead for Creative Futures at the University of Brighton.

The Brighton Futures are an integral part of the University’s Strategic Plan for Research and Enterprise and, together with the Centres of Research and Enterprise Excellence (COREs), are the focus of the University’s globally-influential research and enterprise activities.

The five Futures of the University (Connected, Creative, Healthy, Radical and Responsible) are based on the principles that underpin our strategic plan and characterise the type of research and enterprise that we currently do and plan to expand. Academic leads are senior academics who provide thought leadership, working to consolidate our existing strengths and explore and develop new possibilities.

In this new role, I am keen to contribute to the development of the University’s interdisciplinary research environment that nurtures creativity and innovation. The opportunity to produce inspirational solutions and positive change has never been greater, and I am a strong supporter of bringing together the arts, science and technology to do this.

In 2021 Creative Futures will create an interdisciplinary art/science/technology hive of innovative thinking that promotes scientific understanding, and ignites applied collaborations. We will bring together technologists, scientists, makers, artists, practitioners who employ creative thinking in their projects, in various activities in the next year, in order to support interdisciplinarity and student engagement with research. 

Find out more here and by listening to a University of Brighton recent podcast.

Data science and Covid-19

I wrote this article for the ART/DATA/HEALTH blog on the 23 March 2020.


The COVID-19 crisis has released a large amount of data about infections and deaths worldwide, and understanding what these data mean is essential for influencing public behaviours, such as self-isolation and social distancing.

This is not just my view: it is shared by groups now active in the COVID-19 crisis such as the #data4covid19 initiative. The Data Stewards Network advocate for

BUILDING CAPACITY. They say:

Governments should increase the readiness and the operational capacity and maturity of the public and private sectors to re-use and act on data, for example by investing in the training, education, and reskilling of policymakers and civil servants so as to better build and deploy data collaboratives. Building capacity also includes increasing the ability to ask and formulate questions that matter and that could be answered by data. Such a list of priority questions and metrics could facilitate more rapid response by critical data holders.”

From my point of view, as the project lead of the ART/DATA/HEALTH project, I also find it important to address other skills:

  1. First, citizens need digital skills that help them to spot misinformation about the spread of the COVID-19 virus, which gets circulated online. The public needs to be able to tell what is credible information and what not.
  2. Second, now that many of us are asked to work remotely, we are signing up to new teleconferencing tools – but there are quite a few data privacy concerns, raised by organisations such as the Electronic Frontier FoundationHow can we work and connect with friends and family remotely during COVID-19 while keeping our personal data safe? 

It is hard to grasp the impact of the coronavirus on a local scale, especially when the threat seems “distant”, or affecting “others”. This difficulty is exasperated with the “keep calm” attitude, which has resulted to significant delays in implementing measures, especially here in the UK. How can data science help us understand the COVID-19 situation better?

VISUALISING KEY INFORMATION

One way in which data science is currently being used is to provide key information with simple visual and simulations. The Medium article written by Thomas Pueyo on 10th March 2020 (and updated) received 40 million views in a week and was translated in over 30 languages. The article contains tons of useful information and lots of graphs, which audiences will have got used to seeing in social media in the last month already. Pueyo made some data visualisations himself on the effect of travel restrictions, which shows clearly the decrease of transmission rates.

Source: Puego 2020

MODELLING

Another key way that data science is used however is for modelling the spread of the epidemic and to advice public health and officials on important decisions, for example on closing schools or research funding for a vaccine. For example by mid-January, one group of data scientists had circulated an analysis listing the top 15 cities at risk of the virus spreading, based on airplane flights and travel data (Greenfieldboyce 2020).

The Washington Post model visualisation that was shared extensively in social media as the key to understanding social distancing shows a simulation of people depicted as dots. It shows changes of count of the recoverd, healthy and sick over time, but interestingly it does not depicts deaths. (Stevens 14 March 2020)

Looking at simplified visualisations like this is useful, but we should be reminded that modelling is exactly that: modelling. It cannot provide accurate predictions; it can rather provide indications that might be useful for policy makers to get their head around potential future scenarios. This because the quality of available COVID-19 data is poor: “Right now the quality of the data is so uncertain that we don’t know how good the models are going to be in projecting this kind of outbreak,” says Marc Lipsitch, an epidemiologist at the Harvard T.H. Chan School of Public Health (Greenfieldboyce 2020).

In order for data science to be effective in informing and advising decision makers and citizens however, models and modeling tools, and data that underpin these decisions should be made openly public. This will allow both experts and citizens to scrutinize such decisions. As the Open Data Institute (ODI) CEO Jeni Tennison notes

“the models governments are using are more sophisticated than the Washington Post model. They are based on evidence about other epidemics, and data about this one. They might take into account factors like how long after infection people become contagious, when they start showing symptoms, and how long they are contagious after they recover; different levels of social mixing by different people;  and people’s compliance with instructions.”

The #data4covid19 initiative has been developed to put pressure for more openly distributed data, so that these data can be used by scientists in a systematic and sustainable way during and post crisis. The initiative aims toward building data infrastructures that are key to being prepared to tackle pandemics and other dynamic societal & environmental threats in the future (TheGovLab 16 March 2020)

The group bring the example of how mobile phone data were used in the Ebola case, and how Facebook data were re-used to understand public perceptions around the Zika virus in Brazil, and so on.

A wealth of projects  have responded to the call to build an infrastructure for data-driven pandemic response. These projects are listed to “show a commitment to privacy protection, data responsibility, and overall user well-being”.

You can see a repository for data collaboratives seeking to address the spread of COVID-19 and its secondary effects here.

—————————————————–

Note 1: In the blogpost Covid-19, your community, and you — a data science perspectivepublished in fast.ai on the 9th March 2020, Jeremy Howard and Rachel Thomas made some resources available in 18 languages, in order for people to understand the impact of the virus on their local communities.

“The number of people found to be infected with covid-19 doubles every 3 to 6 days. With a doubling rate of three days, that means the number of people found to be infected can increase 100 times in three weeks (it’s not actually quite this simple, but let’s not get distracted by technical details).”

The post also explains the difference between logistic and exponential growth.

“Logistic” growth refers to the “s-shaped” growth pattern of epidemic spread in practice. Obviously exponential growth can’t go on forever, since otherwise there would be more people infected than people in the world! Therefore, eventually, infection rates must always decreasing, resulting in an s-shaped (known as sigmoid) growth rate over time. However, the decreasing growth only occurs for a reason–it’s not magic. The main reasons are:

  • Massive and effective community response, or
  • Such a large percentage of people are infected that there’s fewer uninfected people to spread to.

Therefore, it makes no logical sense to rely on the logistic growth pattern as a way to “control” a pandemic.”

Note 2: One example of how this is being taken up is a modelling exercise, which provides graph visualisations for staying at ‘home’ households, and households that they categorise as ‘moving’.

The “home,” household “stays in their house, receives deliveries of food or other necessities, and practices social distancing (6+ feet) if they go for a walk outside.  They make decisions like whether to order take-out, whether to treat Amazon or Instacart type deliveries with dilute bleach or let non-perishables with hard surfaces sit for 2 days, etc.  They also decide whether to go see their “best friend” once every 10 days.” The Moving household A “moving” household is a household where one or more people in the household have a job where they move around in the community.  This includes people who are delivering food, bagging or boxing food in distribution centers, police, firemen, doctors, nurses, grocery store workers, and so forth.

Experiences of COVID19. Tell us your story!

Do you live you in Brighton & Hove, and surrounding areas? We’d like to know about how the pandemic has affected you physically, mentally, financially and any support you have accessed.

There is so much data around the coronavirus pandemic – whether it’s the number of cases, the rate of testing or the numbers of people who have died. Then there’s the effect on the economy, numbers of children missing school and so on. The thing is … we know the data don’t show everything. Which is why we’d like to know how you’re doing.

TAKE PART 

The data and stories we collect will be combined with other types of data, such as national statistics, by the local data designer and artist Caroline Beavon, to create an online story that everyone can access.

This survey is organised by the research project ART/DATA/HEALTH, University of Brighton, with Caroline Beavon and supported by the Arts and Humanities Research Council.

Artistic responses to COVID-19 – article in The Polyphony

My team at the ART/DATA/HEALTH project produced a review of early artistic responses to Covid-19, which has been published in the The Polyphony: conversations across the medical humanities. The article offers insights into how emerging artwork tackles key issues arising from the crisis.

The conditions of isolation in the first few months of the Covid-19 pandemic have been linked to a surge of creativity, both for practicing artists and individuals with little previous engagement with the arts. This article traces some early artistic responses to Covid-19, and offers preliminary insights into recurring themes suggested by these creative engagements, including the affective experience of isolation, the symbolic and material meanings of home, and the importance of connection with digital technologies. Whilst the mask emerges as a key symbol of the crisis, artists are also preoccupied with visualising the virus itself, and tackling social issues such as the upsurge of racism and domestic abuse. These artistic expressions play a central role in making sense of what has been termed ‘the new normal’ of social distancing, in navigating waves of information about deaths and infections worldwide, and, perhaps most importantly, in imagining the future.

Read it here